Перевод: со всех языков на английский

с английского на все языки

A History of the Marconi Company

  • 1 Marconi, Marchese Guglielmo

    [br]
    b. 25 April 1874 Bologna, Italy
    d. 20 July 1937 Rome, Italy
    [br]
    Italian radio pioneer whose inventiveness and business skills made radio communication a practical proposition.
    [br]
    Marconi was educated in physics at Leghorn and at Bologna University. An avid experimenter, he worked in his parents' attic and, almost certainly aware of the recent work of Hertz and others, soon improved the performance of coherers and spark-gap transmitters. He also discovered for himself the use of earthing and of elevated metal plates as aerials. In 1895 he succeeded in transmitting telegraphy over a distance of 2 km (1¼ miles), but the Italian Telegraph authority rejected his invention, so in 1896 he moved to England, where he filed the first of many patents. There he gained the support of the Chief Engineer of the Post Office, and by the following year he had achieved communication across the Bristol Channel.
    The British Post Office was also slow to take up his work, so in 1897 he formed the Wireless Telegraph \& Signal Company to work independently. In 1898 he sold some equipment to the British Army for use in the Boer War and established the first permanent radio link from the Isle of Wight to the mainland. In 1899 he achieved communication across the English Channel (a distance of more than 31 miles or 50 km), the construction of a wireless station at Spezia, Italy, and the equipping of two US ships to report progress in the America's Cup yacht race, a venture that led to the formation of the American Marconi Company. In 1900 he won a contract from the British Admiralty to sell equipment and to train operators. Realizing that his business would be much more successful if he could offer his customers a complete radio-communication service (known today as a "turnkey" deal), he floated a new company, the Marconi International Marine Communications Company, while the old company became the Marconi Wireless Telegraph Company.
    His greatest achievement occurred on 12 December 1901, when Morse telegraph signals from a transmitter at Poldhu in Cornwall were received at St John's, Newfoundland, a distance of some 2,100 miles (3,400 km), with the use of an aerial flown by a kite. As a result of this, Marconi's business prospered and he became internationally famous, receiving many honours for his endeavours, including the Nobel Prize for Physics in 1909. In 1904, radio was first used to provide a daily bulletin at sea, and in 1907 a transatlantic wireless telegraphy service was inaugurated. The rescue of 1,650 passengers from the shipwreck of SS Republic in 1909 was the first of many occasions when wireless was instrumental in saving lives at sea, most notable being those from the Titanic on its maiden voyage in April 1912; more lives would have been saved had there been sufficient lifeboats. Marconi was one of those who subsequently pressed for greater safety at sea. In 1910 he demonstrated the reception of long (8 km or 5 miles) waves from Ireland in Buenos Aires, but after the First World War he began to develop the use of short waves, which were more effectively reflected by the ionosphere. By 1918 the first link between England and Australia had been established, and in 1924 he was awarded a Post Office contract for short-wave communication between England and the various parts of the British Empire.
    With his achievements by then recognized by the Italian Government, in 1915 he was appointed Radio-Communications Adviser to the Italian armed forces, and in 1919 he was an Italian delegate to the Paris Peace Conference. From 1921 he lived on his yacht, the Elettra, and although he joined the Fascist Party in 1923, he later had reservations about Mussolini.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics (jointly with K.F. Braun) 1909. Russian Order of S t Anne. Commander of St Maurice and St Lazarus. Grand Cross of the Order of the Crown (i.e. Knight) of Italy 1902. Freedom of Rome 1903. Honorary DSc Oxford. Honorary LLD Glasgow. Chevalier of the Civil Order of Savoy 1905. Royal Society of Arts Albert Medal. Honorary knighthood (GCVO) 1914. Institute of Electrical and Electronics Engineers Medal of Honour 1920. Chairman, Royal Society of Arts 1924. Created Marquis (Marchese) 1929. Nominated to the Italian Senate 1929. President, Italian Academy 1930. Rector, University of St Andrews, Scotland, 1934.
    Bibliography
    1896, "Improvements in transmitting electrical impulses and in apparatus thereof", British patent no. 12,039.
    1 June 1898, British patent no. 12,326 (transformer or "jigger" resonant circuit).
    1901, British patent no. 7,777 (selective tuning).
    1904, British patent no. 763,772 ("four circuit" tuning arrangement).
    Further Reading
    D.Marconi, 1962, My Father, Marconi.
    W.J.Baker, 1970, A History of the Marconi Company, London: Methuen.
    KF

    Biographical history of technology > Marconi, Marchese Guglielmo

  • 2 Shoenberg, Isaac

    [br]
    b. 1 March 1880 Kiev, Ukraine
    d. 25 January 1963 Willesden, London, England
    [br]
    Russian engineer and friend of Vladimir Zworykin; Director of Research at EMI, responsible for creating the team that successfully developed the world's first all-electronic television system.
    [br]
    After his initial engineering education at Kiev Polytechnic, Shoenberg went to London to undertake further studies at the Royal College of Science. In 1905 he returned to Russia and rose to become Chief Engineer of the Russian Wireless Telegraphy Company. He then returned to England, where he was a consultant in charge of the Patent Department and then joint General Manager of the Marconi Wireless Telegraphy Company (see Marconi). In 1929 he joined the Columbia Graphophone Company, but two years later this amalgamated with the Gramophone Company, by then known as His Master's voice (HMV), to form EMI (Electric and Musical Industries), a company in which the Radio Corporation of America (RCA) had a significant shareholding. Appointed Director of the new company's Research Laboratories in 1931, Shoenberg gathered together a team of highly skilled engineers, including Blumlein, Browne, Willans, McGee, Lubszynski, Broadway and White, with the objective of producing an all-electronic television system suitable for public broadcasting. A 150-line system had already been demonstrated using film as the source material; a photoemissive camera tube similar to Zworykin's iconoscope soon followed. With alternate demonstrations of the EMI system and the mechanical system of Baird arranged with the object of selecting a broadcast system for the UK, Shoenberg took the bold decision to aim for a 405-line "high-definition" standard, using interlaced scanning based on an RCA patent and further developed by Blumlein. This was so successful that it was formally adopted as the British standard in 1935 and regular broadcasts, the first in the world, began in 1937. It is a tribute to Shoenberg's vision and the skills of his team that this standard was to remain in use, apart from the war years, until finally superseded in 1985.
    [br]
    Principal Honours and Distinctions
    Knighted 1954. Institution of Electrical Engineers Faraday Medal 1954.
    Further Reading
    A.D.Blumlein et al., 1938, "The Marconi-EMI television system", Journal of the Institution of Electrical Engineers 83:729 (provides a description of the development of the 405-line system).
    For more background information, see Proceedings of the International Conference on the History of Television. From Early Days to the Present, November 1986, Institution of Electrical Engineers Publication No. 271.
    KF

    Biographical history of technology > Shoenberg, Isaac

  • 3 Poulsen, Valdemar

    [br]
    b. 23 November 1869 Copenhagen, Denmark
    d. 23 July 1942 Gentofte, Denmark
    [br]
    Danish engineer who developed practical magnetic recording and the arc generator for continuous radio waves.
    [br]
    From an early age he was absorbed by phenomena of physics to the exclusion of all other subjects, including mathematics. When choosing his subjects for the final three years in Borgedydskolen in Christianshavn (Copenhagen) before university, he opted for languages and history. At the University of Copenhagen he embarked on the study of medicine in 1889, but broke it off and was apprenticed to the machine firm of A/S Frichs Eftf. in Aarhus. He was employed between 1893 and 1899 as a mechanic and assistant in the laboratory of the Copenhagen Telephone Company KTAS. Eventually he advanced to be Head of the line fault department. This suited his desire for experiment and measurement perfectly. After the invention of the telegraphone in 1898, he left the laboratory and with responsible business people he created Aktieselskabet Telegrafonen, Patent Poulsen in order to develop it further, together with Peder Oluf Pedersen (1874– 1941). Pedersen brought with him the mathematical background which eventually led to his professorship in electronic engineering in 1922.
    The telegraphone was the basis for multinational industrial endeavours after it was demonstrated at the 1900 World's Exhibition in Paris. It must be said that its strength was also its weakness, because the telegraphone was unique in bringing sound recording and reproduction to the telephone field, but the lack of electronic amplifiers delayed its use outside this and the dictation fields (where headphones could be used) until the 1920s. However, commercial interest was great enough to provoke a number of court cases concerning patent infringement, in which Poulsen frequently figured as a witness.
    In 1903–4 Poulsen and Pedersen developed the arc generator for continuous radio waves which was used worldwide for radio transmitters in competition with Marconi's spark-generating system. The inspiration for this work came from the research by William Duddell on the musical arc. Whereas Duddell had proposed the use of the oscillations generated in his electric arc for telegraphy in his 1901 UK patent, Poulsen contributed a chamber of hydrogen and a transverse magnetic field which increased the efficiency remarkably. He filed patent applications on these constructions from 1902 and the first publication in a scientific forum took place at the International Electrical Congress in St Louis, Missouri, in 1904.
    In order to use continuous waves efficiently (the high frequency constituted a carrier), Poulsen developed both a modulator for telegraphy and a detector for the carrier wave. The modulator was such that even the more primitive spark-communication receivers could be used. Later Poulsen and Pedersen developed frequency-shift keying.
    The Amalgamated Radio-Telegraph Company Ltd was launched in London in 1906, combining the developments of Poulsen and those of De Forest Wireless Telegraph Syndicate. Poulsen contributed his English and American patents. When this company was liquidated in 1908, its assets were taken over by Det Kontinentale Syndikat for Poulsen Radio Telegrafi, A/S in Copenhagen (liquidated 1930–1). Some of the patents had been sold to C.Lorenz AG in Berlin, which was very active.
    The arc transmitting system was in use worldwide from about 1910 to 1925, and the power increased from 12 kW to 1,000 kW. In 1921 an exceptional transmitter rated at 1,800 kW was erected on Java for communications with the Netherlands. More than one thousand installations had been in use worldwide. The competing systems were initially spark transmitters (Marconi) and later rotary converters ( Westinghouse). Similar power was available from valve transmitters only much later.
    From c. 1912 Poulsen did not contribute actively to further development. He led a life as a well-respected engineer and scientist and served on several committees. He had his private laboratory and made experiments in the composition of matter and certain resonance phenomena; however, nothing was published. It has recently been suggested that Poulsen could not have been unaware of Oberlin Smith's work and publication in 1888, but his extreme honesty in technical matters indicates that his development was indeed independent. In the case of the arc generator, Poulsen was always extremely frank about the inspiration he gained from earlier developers' work.
    [br]
    Bibliography
    1899, British patent no. 8,961 (the first British telegraphone patent). 1903, British patent no. 15,599 (the first British arc-genera tor patent).
    His scientific publications are few, but fundamental accounts of his contribution are: 1900, "Das Telegraphon", Ann. d. Physik 3:754–60; 1904, "System for producing continuous oscillations", Trans. Int. El. Congr. St. Louis, Vol. II, pp. 963–71.
    Further Reading
    A.Larsen, 1950, Telegrafonen og den Traadløse, Ingeniørvidenskabelige Skrifter no. 2, Copenhagen (provides a very complete, although somewhat confusing, account of Poulsen's contributions; a list of his patents is given on pp. 285–93).
    F.K.Engel, 1990, Documents on the Invention of Magnetic Re cor ding in 1878, New York: Audio Engineering Society, reprint no. 2,914 (G2) (it is here that doubt is expressed about whether Poulsen's ideas were developed independently).
    GB-N

    Biographical history of technology > Poulsen, Valdemar

  • 4 Zworykin, Vladimir Kosma

    [br]
    b. 30 July 1889 Mourum (near Moscow), Russia
    d. 29 July 1982 New York City, New York, USA
    [br]
    Russian (naturalized American 1924) television pioneer who invented the iconoscope and kinescope television camera and display tubes.
    [br]
    Zworykin studied engineering at the Institute of Technology in St Petersburg under Boris Rosing, assisting the latter with his early experiments with television. After graduating in 1912, he spent a time doing X-ray research at the Collège de France in Paris before returning to join the Russian Marconi Company, initially in St Petersburg and then in Moscow. On the outbreak of war in 1917, he joined the Russian Army Signal Corps, but when the war ended in the chaos of the Revolution he set off on his travels, ending up in the USA, where he joined the Westinghouse Corporation. There, in 1923, he filed the first of many patents for a complete system of electronic television, including one for an all-electronic scanning pick-up tube that he called the iconoscope. In 1924 he became a US citizen and invented the kinescope, a hard-vacuum cathode ray tube (CRT) for the display of television pictures, and the following year he patented a camera tube with a mosaic of photoelectric elements and gave a demonstration of still-picture TV. In 1926 he was awarded a PhD by the University of Pittsburgh and in 1928 he was granted a patent for a colour TV system.
    In 1929 he embarked on a tour of Europe to study TV developments; on his return he joined the Radio Corporation of America (RCA) as Director of the Electronics Research Group, first at Camden and then Princeton, New Jersey. Securing a budget to develop an improved CRT picture tube, he soon produced a kinescope with a hard vacuum, an indirectly heated cathode, a signal-modulation grid and electrostatic focusing. In 1933 an improved iconoscope camera tube was produced, and under his direction RCA went on to produce other improved types of camera tube, including the image iconoscope, the orthicon and image orthicon and the vidicon. The secondary-emission effect used in many of these tubes was also used in a scintillation radiation counter. In 1941 he was responsible for the development of the first industrial electron microscope, but for most of the Second World War he directed work concerned with radar, aircraft fire-control and TV-guided missiles.
    After the war he worked for a time on high-speed memories and medical electronics, becoming Vice-President and Technical Consultant in 1947. He "retired" from RCA and was made an honorary vice-president in 1954, but he retained an office and continued to work there almost up until his death; he also served as Director of the Rockefeller Institute for Medical Research from 1954 until 1962.
    [br]
    Principal Honours and Distinctions
    Zworykin received some twenty-seven awards and honours for his contributions to television engineering and medical electronics, including the Institution of Electrical Engineers Faraday Medal 1965; US Medal of Science 1966; and the US National Hall of Fame 1977.
    Bibliography
    29 December 1923, US patent no. 2,141, 059 (the original iconoscope patent; finally granted in December 1938!).
    13 July 1925, US patent no. 1,691, 324 (colour television system).
    1930, with D.E.Wilson, Photocells and Their Applications, New York: Wiley. 1934, "The iconoscope. A modern version of the electric eye". Proceedings of the
    Institute of Radio Engineers 22:16.
    1946, Electron Optics and the Electron Microscope.
    1940, with G.A.Morton, Television; revised 1954.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Zworykin, Vladimir Kosma

  • 5 Preece, Sir William Henry

    [br]
    b. 15 February 1834 Bryn Helen, Gwynedd, Wales
    d. 6 November 1913 Penrhos, Gwynedd, Wales
    [br]
    Welsh electrical engineer who greatly furthered the development and use of wireless telegraphy and the telephone in Britain, dominating British Post Office engineering during the last two decades of the nineteenth century.
    [br]
    After education at King's College, London, in 1852 Preece entered the office of Edwin Clark with the intention of becoming a civil engineer, but graduate studies at the Royal Institution under Faraday fired his enthusiasm for things electrical. His earliest work, as connected with telegraphy and in particular its application for securing the safe working of railways; in 1853 he obtained an appointment with the Electric and National Telegraph Company. In 1856 he became Superintendent of that company's southern district, but four years later he moved to telegraph work with the London and South West Railway. From 1858 to 1862 he was also Engineer to the Channel Islands Telegraph Company. When the various telegraph companies in Britain were transferred to the State in 1870, Preece became a Divisional Engineer in the General Post Office (GPO). Promotion followed in 1877, when he was appointed Chief Electrician to the Post Office. One of the first specimens of Bell's telephone was brought to England by Preece and exhibited at the British Association meeting in 1877. From 1892 to 1899 he served as Engineer-in-Chief to the Post Office. During this time he made a number of important contributions to telegraphy, including the use of water as part of telegraph circuits across the Solent (1882) and the Bristol Channel (1888). He also discovered the existence of inductive effects between parallel wires, and with Fleming showed that a current (thermionic) flowed between the hot filament and a cold conductor in an incandescent lamp.
    Preece was distinguished by his administrative ability, some scientific insight, considerable engineering intuition and immense energy. He held erroneous views about telephone transmission and, not accepting the work of Oliver Heaviside, made many errors when planning trunk circuits. Prior to the successful use of Hertzian waves for wireless communication Preece carried out experiments, often on a large scale, in attempts at wireless communication by inductive methods. These became of historic interest only when the work of Maxwell and Hertz was developed by Guglielmo Marconi. It is to Preece that credit should be given for encouraging Marconi in 1896 and collaborating with him in his early experimental work on radio telegraphy.
    While still employed by the Post Office, Preece contributed to the development of numerous early public electricity schemes, acting as Consultant and often supervising their construction. At Worcester he was responsible for Britain's largest nineteenth-century public hydro-electric station. He received a knighthood on his retirement in 1899, after which he continued his consulting practice in association with his two sons and Major Philip Cardew. Preece contributed some 136 papers and printed lectures to scientific journals, ninety-nine during the period 1877 to 1894.
    [br]
    Principal Honours and Distinctions
    CB 1894. Knighted (KCB) 1899. FRS 1881. President, Society of Telegraph Engineers, 1880. President, Institution of Electrical Engineers 1880, 1893. President, Institution of Civil Engineers 1898–9. Chairman, Royal Society of Arts 1901–2.
    Bibliography
    Preece produced numerous papers on telegraphy and telephony that were presented as Royal Institution Lectures (see Royal Institution Library of Science, 1974) or as British Association reports.
    1862–3, "Railway telegraphs and the application of electricity to the signaling and working of trains", Proceedings of the ICE 22:167–93.
    Eleven editions of Telegraphy (with J.Sivewright), London, 1870, were published by 1895.
    1883, "Molecular radiation in incandescent lamps", Proceedings of the Physical Society 5: 283.
    1885. "Molecular shadows in incandescent lamps". Proceedings of the Physical Society 7: 178.
    1886. "Electric induction between wires and wires", British Association Report. 1889, with J.Maier, The Telephone.
    1894, "Electric signalling without wires", RSA Journal.
    Further Reading
    J.J.Fahie, 1899, History of Wireless Telegraphy 1838–1899, Edinburgh: Blackwood. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    E.C.Baker, 1976, Sir William Preece, F.R.S. Victorian Engineer Extraordinary, London (a detailed biography with an appended list of his patents, principal lectures and publications).
    D.G.Tucker, 1981–2, "Sir William Preece (1834–1913)", Transactions of the Newcomen Society 53:119–36 (a critical review with a summary of his consultancies).
    GW / KF

    Biographical history of technology > Preece, Sir William Henry

См. также в других словарях:

  • Marconi Company — The Marconi Company Ltd. was founded by Guglielmo Marconi in 1897 as The Wireless Telegraph Signal Company (sometimes presented as Wireless Telegraph Trading Signal Company). It was renamed Marconi s Wireless Telegraph Company in 1900 and The… …   Wikipedia

  • History of the Falkland Islands — The history of the Falkland Islands goes back at least five hundred years, with active exploration and colonisation only taking place in the 18th century. Nonetheless, the islands have been a matter of controversy, as they have been claimed by… …   Wikipedia

  • History of the Internet — Main article: Internet The history of the Internet starts in the 1950s and 1960s with the development of computers. This began with point to point communication between mainframe computers and terminals, expanded to point to point connections… …   Wikipedia

  • Marconi scandal — The Marconi scandal was a British political scandal that broke in the summer of 1912. It centred on allegations that highly placed members of the Liberal government, under H. H. Asquith as Prime Minister, had profited by improper use of… …   Wikipedia

  • Marconi, Guglielmo — born April 25, 1874, Bologna, Italy died July 20, 1937, Rome Italian physicist and inventor. He began experimenting with radio waves in 1894. In 1896 he went to England, where he developed a successful system of radio telegraphy. His work on the… …   Universalium

  • Marconi Station — The New Brunswick Marconi Radio Station in Somerset, New Jersey, being toured in 1921 by some of the greatest physicists and scientists of the era, including Albert Einstein and Nikola Tesla. The Marconi Wireless Corporation operated numerous… …   Wikipedia

  • History of radio — The pre history and early history of radio is the history of technology that produced radio instruments that use radio waves. Within the timeline of radio, many people contributed theory and inventions in what became radio.… …   Wikipedia

  • Marconi Electronic Systems — Limited Fate Merged with British Aerospace Successor BAE Systems Founded 20 July 1897 (as Marconi Company) …   Wikipedia

  • Marconi Myriad — The Marconi Myriad was an early computer designed by the Marconi Company in the 1960s and assembled in the same factory as the English Electric System 4/30. Myriad was a 24 bit machine largely built using integrated circuits from Ferranti. These… …   Wikipedia

  • Lightvessels in the United Kingdom — The history of Lightvessels in the United Kingdom goes back over 250 years. This page also gives a list of lightvessel stations within the United Kingdom, the Channel Islands and Gibraltar.HistoryThe world s first lightvessel was the result of a… …   Wikipedia

  • Guglielmo Marconi — Born 25 April 1874(1874 04 25) Palazzo Marescalchi, Bologna …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»